Алгебраическое уравнение - Definition. Was ist Алгебраическое уравнение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Алгебраическое уравнение - definition

Полиномиальное уравнение; Алгебраические уравнения; Теория уравнений; Степень алгебраического уравнения; Многочленное уравнение

Алгебраическое уравнение         

уравнение, получающееся при приравнивании двух алгебраических выражений (См. Алгебраическое выражение). А. у. с одним неизвестным называется дробным, если неизвестное входит в знаменатель, и иррациональным, если неизвестное входит под знаком радикала. Всякое А. у. может быть преобразовано без потери корней к виду a0xn + a1xn-1 + ... + an = 0. О решении таких уравнений см. Алгебра и Численное решение уравнений.

Д. К. Фаддеев.

АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ         
уравнение, получающееся при приравнивании двух алгебраических выражений. Напр., x2+xy+y2 =x+1. Алгебраическое уравнение с одним неизвестным может быть преобразовано к виду aо + a1x + ... + anxn=0.
ДИОФАНТОВЫ УРАВНЕНИЯ         
алгебраические уравнения или их системы с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения.

Wikipedia

Алгебраическое уравнение

Алгебраическое уравнение (полиномиальное уравнение, многочленное уравнение) — уравнение вида

P ( x 1 , x 2 , , x n ) = 0 , {\displaystyle P(x_{1},x_{2},\ldots ,x_{n})=0,}

где P {\displaystyle P}  — многочлен от переменных  x 1 , , x n {\displaystyle x_{1},\ldots ,x_{n}} , которые называются неизвестными.

Коэффициенты многочлена P {\displaystyle P} обычно берутся из некоторого поля F {\displaystyle {F}} , и тогда уравнение P ( x 1 , x 2 , , x n ) = 0 {\displaystyle P(x_{1},x_{2},\ldots ,x_{n})=0} называется алгебраическим уравнением над полем F {\displaystyle {F}} .

Степенью алгебраического уравнения называют степень многочлена P {\displaystyle P} .

Например, уравнение

y 4 + x y 2 + y 2 z 5 + x 3 x y 2 + 3 x 2 1 = 0 {\displaystyle y^{4}+{\frac {xy}{2}}+y^{2}z^{5}+x^{3}-xy^{2}+3x^{2}-1=0}

является алгебраическим уравнением 7-й степени от 3 переменных (с 3 неизвестными) над полем вещественных чисел.

Was ist Алгебра<font color="red">и</font>ческое уравн<font color="red">е</font>ние - Definition